ГЛАВА 3
|
СМЕЖНЫЕ ВОПРОСЫ ИЗ ТЕОРИИ РАЗМЕРНОСТЕЙ
|
|
О РАЗМЕРНОСТЯХ
Обычное понятие размерности мы считаем интуитивно ясным и легко определяемым математически. Понятие размерности линейного пространства известно из элементарной геометрии и линейной алгебры. Размерность многообразия - это размерность евклидовых шаров (областей, окрестностей), из которых склеено многообразие и т.д. Однако в математике, механике, физике встречаются множества, для которых понятие размерности нуждается в специальном обсуждении и, более того, для них можно определить не одну, а несколько различных размерностей. Причем эти размерности могут между собой не совпадать. Интуитивно ясно, что речь идет о множествах, устроенных локально ''существенно хуже'', чем открытые области в евклидовом пространстве. Строго говоря, разные понятия размерности можно определить для произвольного топологического пространства. Но для ''хороших'' пространств, к которым относятся многообразия, все эти числа (размерности) совпадают. Однако, как только мы переходим к рассмотрению более сложных, экзотических (а иногда в некотором смысле ''патологических'') объектов, разные понятия размерности приводят нас, вообще говоря, к разным числам. Раньше считалось, что это происходит в основном для класса пространств, редко встречающихся на практике. Однако недавно выяснилось, что такие аномальные объекты встречаются сплошь и рядом в классических областях математики. Это суть фракталы. Начнем обсуждение понятия размерности.
|
|
|
Copyright © 2002-2004
|